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Predicting population using mobile device counts
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The statistical question? || 15 1e HaRDEST PART. j
— Can we use mobile device .
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BIG
DATA

counts from base stations
to estimate population
counts?

Quality of mobile device
counts

Simulated population
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Source - http://barnraiserslic.com/2015/06/25-examples-of-companies-doing-
something-with-big-data/

and mobile device Does size matter?
* No, value creation does - Create big value from big
and small) datasets!
Cou nts o . (Yes, (big) éarbage in, (big) garbage out
Model fitting and results
Conclusion
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Base Stations generate Call Data
Records .

HOW MOBILE PHONES WORK NETWORK
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. Mobile phones comprise a transmitter and receiver
. Call made/received via Base stations
. CDR can be used to estimate pop movement

Mobile device data and population mobility
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No under-coverage issues
Measurement error issues

Over-coverage, not relevant for inference

Inference
Population

Big Data
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Aim: Use model device counts to predict population counts
Mobility of 100,000 persons was simulated

Each person wanders between ‘home’ base station (BS), ‘destination’ BS and ‘home’
BS throughout a 24 hr period; throughout journey, each person reaches an
intermediary BS each hour. All BS are randomly assigned

Each person has a 65% chance of being picked up by a BS; and each person’s
number of mobile device is governed by a Poison distribution with mean = 1.5.

A total of 1,000 Base Station pairs of mobile device and population counts were
simulated

Dynamic Linear MQdeI fitted for random 100 Base Station pairs

The fitted Model was used to predict the other 900 Base Station population counts
Relative prediction error was calculated for each of the 900 Base Station pop counts
Steps 6, 7 and 8 were repeated for another random sample of 100 Base Stations

10. Step 9 was repeated 200 times.
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“E

nglish” version

Population (Pop) counts
assumed to be stochastically
related to the mobile device
(MD) counts through a “Pop to
MD” ratio

The ratio is allowed to change
over time

Ratio is estimated using a
“EM” algorithm

The estimated ratio is used for
Pop counts prediction

Modelling base station data using “
dynamic linear models
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“Greek” version
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B=Fa+e . B LL
B ~N(Bp.Q)
e, ~independent N(0,Z)
g ~independent N(0,Q) , g 1 D@

where [,,Z and Qare unknown fort=0,....T. Bavesian Hierachical Modelling (BHM)
requires priors to be specified for X and Q. In this example, we use Empircal Hierachical
Modelling (EHM) by plugging MLEs of X and Q. using the EM algonthms, into the
updating equations.

EM Algonthm — Latent variable are f
i.  Compute “maximisers” from the log likelihood - (M-step)
ii.  Compute Expectation of the maximisers based on guesses of Q and I - (E-step):
— Basically Expected values of B,. B,_,B,.B,B,. fort =1...T given the data D

1.e. Kalman smoothers.
1. Update parameters using the maximisers
1v.  Repeat (1) and (u) until convergence
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Predicted vis BS population counts “
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Synthetic vs Predicted Mobile Count
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RRMSE (%)

RRMSE (%)

Relative root mean square prediction errors
Leave 900 out CV procedure

Distribution of Grouped Relative Root Mean Squared Error
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Relatively accurate population counts can be
predicted using mobile device counts by
employing a Dynamic Linear Model

— Modelling requires
* Avalilability of mobile device counts for all base stations
— from all telecommunication service providers
« Ground truths available from a random sample of
base stations
— To estimate the “Pop to MD” ratio

— Accuracy of prediction will improve over time if this ratio
Is allowed to change over time
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Siu-ming.tam@abs.gov.au
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